Mapping white matter bundle tracts and cortical myelin from multi-contrast imaging in the awake macaque monkey

Rakshit Dadarwal^{1,2}, Fabien Balezeau³, Marcus Haag⁴, Michael C. Schmid^{3,4}, Susann Boretius^{1,2}, Michael Ortiz-Rios^{1,3} ¹Functional Imaging Laboratory, German Primate Center, Göttingen, Germany; ²Georg-August University Göttingen, Göttingen, Germany; ³Biosciences Institute, Newcastle upon Tyne, England; ⁴Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland

INTRODUCTION

- In-vivo whole-brain multi-contrast awake imaging enables the detection of structural and functional features in brain networks without anesthesia.
- The macaque monkey has significantly contributed to mapping the human brain connectome by providing means to validate in-vivo neuroimaging microstructure and tractography measures with ex-vivo cytoarchitectonic and tract-tracing anatomical methods.
- Awake non-human primate imaging enables us to detect structural and functional features in brain networks in cognizant monkeys and allows for repeated measurement without anesthesia-related burden for the animal.
- This study demonstrates the feasibility and robustness of multicontrast MRI acquisitions across sessions and subjects in awake macaque monkeys.

METHODS

• Four healthy female rhesus macaques (*Macaca mulatta*) with a mean age of 3 - 4 years were scanned at a 4.7 T scanner (Bruker BioSpin) with a four-channel phased array coil using the following MR parameters

_	T_1w	T ₂ w	Diffusion
sequence	MDEFT	RARE	SE - EPI
resolution (mm)	0.6x0.6x0.6	0.6x0.6x0.6	1x1x1
repetition time (ms)	2000	12,300	14,200
echo time (ms)	3.7	14.3	58
flip angle (deg)	30	180	90 / 180
averages	1	5	5
acquisition time (min)	8	22	75
b-values (s/mm ²) / gradient directions	-	-	850 / 60

- T1-weighted (T1w) and T2-weighted (T2w) volumes were linearly registered to the corresponding contrast-specific first session volume. All in-session data were then averaged to form a contrast and subjectspecific T1w and T2w volume¹.
- All diffusion-weighted imaging (DWI) sessions were preprocessed (denoise, eddy current correction, and motion correction) and linearly registered to create a subject average².
- The subject-specific averaged T2w, and DWI volumes were linearly registered to the individual's T1w average¹.
- Diffusion tensor maps were calculated by fitting the DTI model².
- The four macaques' volumes were nonlinearly aligned to form a T1w, T2w, and DWI study average (Average).
- T1w average was nonlinearly registered to the D99 and NMT v2 atlases to identify the ROI^{3, 4}.
- The cortico-spinal tract (CST) was mapped by selecting the motor cortex (M1) as a seed and pons as the target.
- Cortical surfaces were created using FreeSurfer, and maps were projected onto the surface and along with ROIs contours using AFNI/SUMA tools⁵.

Macaque 1 Macaque 2 Macaque 3 Macaque 4 Prob. CST

References

- Avants, B.B., et al., 2011.
- 2. https://github.com/RDadarwal/Diffusion-MRI.
- 3. Jung, B., et al., 2021.
- 4. Saleem, K.S., Logothetis, N.K., 2012.
- 5. Cox, R.W., Hyde, J.S., 1997.

Acknowledgments MCS and by the Deutsches and MOR.

rdadarwal@dpz.eu

@RakshitDadarwal

RESULTS

A: Intra-subject reproducibility

0.8 ر		FA		ן 1.1	ADC [10 ^{−3} · r	n
0.6	• ••	• • • • •		0.9-	•••		
0.4			••••	0.7-		• • • • •	•
0.2	CC	IC	AC	0.5	CC	IC	

- **A**: values across multiple sessions.
- **B**: higher degree of myelination.

B: Cortical myelination (T1w/T2w)

C: Inter-subject variability

This work was supported by ERC OptoVision 637638 granted to Primatenzentrum (DPZ) to RD

Comparisons across the subjects revealed similar FA, ADC, RD, and AD values. **C**:

- subjects of awake macaque monkeys.
- The achieved quality was auspicious and sufficient to reveal cortical myelination and tissue microstructural features, including white matter fiber bundles.
- Tractography results ensured the robustness of detecting white matter fiber bundles.

UNIVERSITÉ DE FRIBOURG UNIVERSITÄT FREIBURG

Intra-individual quantitative and qualitative results showed similar FA, ADC, RD, and AD

Pattern of T1-T2-ratio (assumed to reflect cortical myelination) was in accordance with previous reports revealing highly myelinated areas such as visual, motor, pre-motor, and auditory cortex. High fiber densities were found in the motor cortex, along with a

CONCLUSION

This study shows the feasibility of obtaining multiple MRI contrasts across sessions and